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Introduction 

§  Kinetics includes all collisional effects. 
–  momentum and energy exchange in: 

–  thermal conduction & equilibration,  
–  viscosity,  
–  species particle flux relative to Ucm 

§  Multi-species fluid transport approximations can represent some 
kinetic effects. 
–  assumed ‘nearly’ Maxwellian distributions 
–  small parameter Kn: 

–  MFP < gradient scales 
–  t  >>   

§  ICF Shock heating at interfaces: 
–  fluid approximations may not be formally valid but may perform 

reasonably well. 
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Approximated as diffusive processes  
with characteristic scale length, LD: 
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Kinetics to plasma fluid transport ** 
self-consistent plasma particle, heat and momentum flux  
** condensed from: Simakov and Molvig, PoP 2016 

§  Boltzmann equation: 

§  Integrate over velocities:  LHS, first order in Kn -> ‘fluid terms’,  RHS -> ‘collisions’, 
consider flux vector. 

§  Approximate distribution function w/ Legendre (Sonine) polynomials (for vector 
piece of solution): 

§  Solve coupled equations for particle and heat flux coefficients of each species, i, of 
N species: 

§  Binary system simplifies for light particle flux: 
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concentration and ion 
barodiffusion terms are 
equivalent in Zimmerman-
Schunk model (Hoffman, 
et.al., PoP, 2015) 

concentration given as mass 
fraction (Kagan, Tang, 2014) 
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∇YFor 



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 

Plasma transport in xRage (Eulerian AMR code) compares well to 
non-linear self-similar diffusion test problem1 under P-T equilib. 

[1] D-AL planar mixing at 4 keV,  
Molvig, Vold, Dodd, Wilks, PRL, 2014 
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§  code solutions during development 
converged on analytic self-sim soln 
and kinetic soln for D-Al mixing. 
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Χ Y = mass frac  
X = molar frac 
v = ‘volume’ frac 
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§  code profiles for X, Y matches 
analytics in Molvig, et.al., 20141 
(for ideal gas or EOS tables ) 

§  mix profile contributions for low 
z – high z mixing: DD-Au 

§  ion barodiffusion ~ doubles mix 
width for DD-Au 

 

§  ion barodiffusion contributes 
less for lower z mixing 

-10                x –microns-               10 

test case at 
t = 0.25 ns 

-10         x –microns-         10 
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Viscosity 

§  Previous work showed classical binary viscosity can be approximated as a sum 
over species, and terms simplify considerably in 1D spherical symmetry. 

Plasma viscosity due to 
electrons is important in high 
z material. ( X = 0 here) 
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§  Ion viscosity in classical binary transport (Molvig, 
Simikov, Vold, PoP 2014):  

 
 
§  Ion viscosity in approx as species summation 

§  Viscous terms simplify in 1D spherical geometry 
–  viscous tensor: 

–  viscous energy dissipation 
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Temperature profiles from 1D Lagrange simulations are sensitive to 
viscous terms and at center show a peak in Ti for the inviscid case. 
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§  at shock convergence 
–  (1.42 ns inviscid) 
–  (1.52 ns viscous) 
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§  after shock convergence 
–  (1.56 ns ) 

§  during incoming 
shock convergence 
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Density [r,t] surface in a 1D Lagange code: ICF 
implosion with and without plasma viscosity 
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Density [r,t] surface in ICF implosion 
with and without plasma viscosity AND 
w/ ‘late time’ artificial viscosity zeroed 

§  q 
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§  ‘Standard’ Lagrange w/ artificial 
viscosity 

§  Lagrange w/ plasma viscosity 
§   NO artificial viscosity (after 

shock convergence) 
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Kinetic coefficients**, for ion temperature gradient drive in 
binary species mixing, are of order unity when using molar 
concentrations but appear large using mass concentrations. 

§  Assume (to simplify):  
§  Y (mass frac) = 0.5 Erfc[ξ] 
§  ξ = z / LD = z / (2(D t)1/2) 
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Preliminary simulations (xRage) of Rinderknect planar shock experiment using 
MSV** ion transport model show a depletion of Ne at the ion shock front 
followed by a small enhancement of Ne concentration behind the shock front. 

§  Depletion/Enhancement is a result of ion thermodiffusion. 

t1 = 2.5 ns   

•  Depletion 
and 
enhancement 
are persistant  
w/ ion shock 
front. 
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Simulations (xRage) of OMEGA shot #78199 using MSV multispecies ion-
transport model show a depletion of Ar at the incoming ion shock front 
followed by a persistent enhancement of argon concentration behind the 
shock and following shock reflection at center. 

§  Enhancement is a result of ion thermodiffusion 
–  Simulations with ion thermodiffusion turned off do not show this effect. 
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Plasma transport simulations (xRage) showing mix layer profile 
evolution at early times (< ~ psec, Kn ~ mfp/LD large) and into fluid 
regime ( ~ ns, Kn ~ mfp/LD small) for DD-Al mixing at 4 keV). 

3 distinct 
phases: 
1 - << 1 psec: 
u grows starting 
‘tri-model’ profile 
2 - ~ 1- 2 psec: u 
tri-model profile 
relaxes in 
magnitude, 
spreading in 
space 
3- < 0.1-0.2 ns: 
dP relaxed -> ~ 0, 
while div*u ≠ 0, 
and relaxes on 
diffusion time 
scale 

2.5 psec 
1. psec 

0.2 psec 
0.025 psec 0.25 nsec 

0.1 nsec 

§  pressure §  velocity 

•••  Results are being compared to kinetic simulations in VPIC 
(L.Yin) and iFP (Chacon, Taitano) to understand early time 
(large Kn number) mix behavior. 
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3 distinct 
phases: 
1 - << 1 psec: 
pressure 
discontinuity, 
dP, grows at 
interface. 
2 - ~ 1- 2 psec: 
dP propagates 
into each fluid 
at its sonic 
speed. 
3- < 0.1-0.2 ns: 
dP has relaxed 
-> 0, in the mix 
region 

D D Al Al 
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Small scale structures: CAUTION: numerics can 
mask the plasma transport mixing 

Slide 13 

§  diffusion mix front 
grows in time LD ~ 
2(D t)1/2 

‘side’ view 
‘top’ view 
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mix volumes:    early time: Vm[t] ~ Am[t] LD[t]  …..and finally… Vm[t] ~ f[ Am[t],LD[t],λ[t] ]        

§  Numerical 
solutions for ICF 
‘sym-cap’  
mixing** show 
detailed 
structure w/ 
more realistic IC. 

§  When structure 
sizes are 
comparable to 
numerical 
diffusion scales, 
the plasma 
diffusion may 
not greatly 
modify the 
solution. 

λ 

** Haines, Grimm, et.al. in preparation, 2016 

time 

simple IC geometry ‘detailed’ IC geometry 

§  For RM, RT, KH 
instabilities, mix 
volume related to 
interfacial area, 
A, in more 
complex manner 


